Data-driven companies across the globe are upgrading from legacy data management architectures to cloud-based data warehouses and data lakes for analytics. Now is your opportunity to do the same.
Two of the best data warehousing solutions to evaluate are Google BigQuery and MySQL.
There are three ways companies can create value from data:
Historically, companies would create separate tech stacks, teams, and workflows for each of these workloads. They would hire a business intelligence team to stand up a data analytics stack, write SQL and build dashboards. They would separately hire an IT team to automate workflows with Python or an Integration Platform as a Service (iPaaS) solution. And they would hire engineers and product managers to build data products with on-premises technology or using cloud platforms like GCP, AWS, and Azure.
Nowadays, companies are becoming more data-driven. The technologies, reporting structures, and teams are becoming more complex. Real-time and streaming workflows are being added. Machine learning and artificial intelligence (AI) are common and data teams are looking for a scalable solution for data processing.
With cloud-based software-as-a-service (SaaS) data warehouses like BigQuery and MySQL, data teams are now empowered to centralize all use cases under a single team and data stack.
As companies undergo digital transformation, one of the first pieces of technology they upgrade is their analytics environment.
Most teams evaluate a handful of the best cloud warehousing solutions including:
Now that we've outlined the options, let's dig into comparing the capabilities of two of the best solutions on the market: BigQuery and MySQL.
Let's walk through the key considerations for each solution, but first, let's provide a quick overview of each platform.
BigQuery. BigQuery is a serverless, scalable, fully managed cloud data warehouse that's part of the Google Cloud Platform (GCP).
MySQL. MySQL is a popular database choice for web development, enabling the storage and management of data for dynamic websites and web apps.
Now for the details.
BigQuery and MySQL have similar pricing models with nuanced differences.
BigQuery Pricing. BigQuery uses on-demand and flat-rate pricing and varies depending on your region.
MySQL Pricing. MySQL is a commonly used open-source relational database management system. While the fundamental software is freely available under the GNU General Public License, there are expenses with MySQL in a business setting or on cloud platforms that you might not be aware of.
Your data warehouse is only as good as the data sources you can ETL into your analytics environment and the downstream use cases you can unlock.
It is common for cloud warehouses to offer native integrations that analyze cloud storage data from the major cloud providers (i.e. Amazon S3, Google Cloud Storage, Azure Blob Storage, etc.). It's always easy to connect downstream visualization tools (i.e. Power BI, Tableau, Looker, etc.) to build dashboards on top of your cloud data warehouse or data lake as well.
BigQuery Integrations. BigQuery is a SaaS data warehouse tool. You can store and manage data within BigQuery, but you'll need a separate tool for the ETL (extract, transform, load) process itself.
MySQL Integrations. MySQL is not a data warehouse, but is rather more frequently used as one of many data sources to extract MySQL data out of, or to load data into.
Using MySQL data pipelines, data analysts can extract data MySQL data out of a database into a data warehouse for analysis.
For both platforms, there are always data sources that are not natively integrated. This is a common scenario where clients use Portable's 300+ no-code ETL connectors to sync data.
Once data is loaded into your analytics environment, you need to be able to process the data. To do so, the warehouse you select needs to have strong database capabilities.
BigQuery Database Features. BigQuery offers superior performance and scalability for analytics. Its fully managed architecture handles backend tasks automatically to improve performance.
MySQL Database Features. MySQL works with many platforms and programming languages, including Linux, Windows, macOS.,
It offers different kinds of storage engines; InnoDB is the default one which is used for transactions and foreign keys while MyISAM engine caters to read-heavy applications.
In the data world, no one platform will be able to solve every problem for a client. By building ecosystems, cloud warehouses can partner with a wide array of industry-leading tools and technologies to offer solutions bigger than a single product.
BigQuery Ecosystem. BigQuery ties directly into the broader GCP ecosystem and has strong partnerships with other tools in the Modern Data Stack.
MySQL Ecosystem. MySQL is free to use and the community has a major influence in its development and advancement.
Technical performance and maintenance are critical for any analytics, automation, or product development use case. As data volumes grow, it's important to leverage capabilities like caching, vacuuming, and concurrency scaling. Let's outline the considerations for both BigQuery and MySQL.
BigQuery Performance And Maintenance. BigQuery's serverless architecture means you don't need to worry about allocating clusters or resources to individual processes to ensure performance.
MySQL Performance And Maintenance. MySQL boasts great performance, scalability, and dependability.
The foundation of any data initiative must always be security, governance, and compliance. Not just encryption, but also role-based access control, authentication and authorization, backups, policies, procedures, and granular controls.
BigQuery Security, Governance, Compliance. BigQuery supports several types of data encryption, including end-to-end and client-side, making it one of the most robust options for data security.
MySQL Security, Governance, Compliance. MySQL protects sensitive data access by way of encryption.
Choosing a data warehousing solution is an important decision that you need to make based on your own specific needs.
We've outlined the pros and cons of both BigQuery and MySQL to help frame out the scenarios in which each solution makes sense.
One of the best ways to make a decision is to try before you buy. With Portable you can load data into both BigQuery and MySQL, build a dashboard and see how each platform performs before making a final decision.
There's no downside to exploring our connector catalog or moving data to help with the process.